Answer all questions in the booklets provided. A periodic table is attached. You have 50 min .

[9] Question 1

Draw the most probable structure and give the valence electron count for the metal for each of the following species. (Show your work!)
a) $\left[\mathrm{Nb}(\mathrm{CO})_{5} \mathrm{H}\right]^{2-}$
b) $\mathrm{Hf}(\mathrm{CO})_{2}\left(\eta^{2}-\mathrm{Me}_{2} \mathrm{PCH}_{2} \mathrm{CH}_{2} \mathrm{PMe}_{2}\right)_{2} \mathrm{I}_{2}$ (yes Hf is 8 -coordinate)
c) $\left(\eta^{7}-\mathrm{C}_{7} \mathrm{H}_{7}\right) \mathrm{Tc}\left(\eta^{2}-\mathrm{MeC} \equiv \mathrm{CMe}\right)\left(\mathrm{CH}_{3}\right)(\mathrm{Cl})$

[15] Question 2

Draw the structure of the final product(s) of the following reactions. (3 marks each).
a) $2 \mathrm{H}_{2} \mathrm{C}=\mathrm{CHCH}_{3}+2 \mathrm{PtBr}_{2} \longrightarrow$
b) $\mathrm{Co}_{2}(\mathrm{CO})_{8}+\mathrm{HC} \equiv \mathrm{CH} \xrightarrow{\Delta}$
c) ferrocene + acetic anhydride $\xrightarrow{\mathrm{H}_{3} \mathrm{PO}_{4}}$
d) $2 \mathrm{CH}_{3} \mathrm{Li}+\mathrm{ZnCl}_{2} \xrightarrow{\text { hexane }}$
e) $\left[\left(\eta^{5}-\mathrm{Cp}\right) \mathrm{Ru}(\mathrm{CO})_{2}\right]^{-}+\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{C}(=\mathrm{O}) \mathrm{Cl} \longrightarrow$

[12] Question 3

a) Of the compounds $\mathrm{Cr}(\mathrm{CO})_{5}\left(\mathrm{PF}_{3}\right)$ and $\mathrm{Cr}(\mathrm{CO})_{5}\left(\mathrm{PCl}_{3}\right)$, which would you expect to have:
i) the shorter C-O bonds? Explain (2 marks)
ii) the higher energy $\mathrm{Cr}-\mathrm{C}$ stretching bands in the infrared? Explain (2 marks)
b) The complex $(\mathrm{CO})_{5} \mathrm{CrN} \equiv \mathrm{NCr}(\mathrm{CO})_{5}$ has a longer $\mathrm{N}-\mathrm{N}$ bond than $(\mathrm{CO})_{5} \mathrm{CrN} \equiv \mathrm{N}$ which in turn has a longer $\mathrm{N}-\mathrm{N}$ bond than N_{2}. Explain thoroughly. (3 marks)
c) Explain why $\mathrm{Mo}\left(\mathrm{PMe}_{3}\right)_{5} \mathrm{H}_{2}$ is a dihydride (contains two separate H ligands), but $\mathrm{Mo}(\mathrm{CO})_{3}\left(\mathrm{PMe}_{3}\right)_{2}\left(\mathrm{H}_{2}\right)$ contains the dihydrogen ligand. $(\mathrm{Me}=$ methyl) $\quad(3$ marks $)$
d) Explain why $v(\mathrm{CO})$ for $\mathrm{MnCp}(\mathrm{CO})_{3}$ are at 2023 and $1939 \mathrm{~cm}^{-1}$ and those for $\mathrm{MnCp}^{*}(\mathrm{CO})_{3}$ are at 2017 and $1928 \mathrm{~cm}^{-1} .\left(\mathrm{Cp}^{*}=\mathrm{C}_{5}(\mathrm{Me})_{5}\right)(2$ marks $)$

[4] Question 4

Photolysis at $-78^{\circ} \mathrm{C}$ of $\left[\left(\eta^{5}-\mathrm{C}_{5} \mathrm{H}_{5}\right) \mathrm{Fe}(\mathrm{CO})_{2}\right]_{2}$ results in the loss of a colourless gas and the formation of an iron-containing product having a single carbonyl band at $1785 \mathrm{~cm}^{-1}$ and containing 14.7% oxygen by mass. Draw a plausible structure for the product. (4 marks)

